SE600 RS-422 Remote Control Protocol

VER: 0.1a
Release date: 2013/07/30

1. Physical layer

2. Data link layer
2.1 Frame format
3. Application layer
3.1 Command data format

3.2 Return data format

4. Operated

4.1 The command group $=05 \mathrm{~h}$ (SE600 Main board control)
4.1.1 The control mode $=00 \mathrm{~h}($ ASK status mode $)$
4.1.2 The return data stream from SE600 (ASK status mode)

4.2 The control mode $=01 \mathrm{~h}$ (NORMAL key mode)

4.2.1 The control data stream
4.2.2 The return data stream from SE600
4.2.3 The Key Command Code
4.2.4 Example
4.2.5 T-bar command
4.3 The Main Board Extension Command Code
4.3.1 The control data stream
4.3.2 The Main Board Extension Command Code

4.4 The Extension Commands

4.4.1 The Main Bard Extension Command for memory
4.4.2 The Extension Main Bard Command for Speed key Setting

1. Physical layer

1.1 Control I/O format: RS-422
1.2 SE600 remote RS-422 pin definition: DSUB-9F: (Pin2=TX_P, Pin7=TX_N), (Pin3=RX_P, Pin8=RX_N), (Pin1, 5, 9=GND),
1.3 Communication baud rate: $\mathbf{1 1 5 2 0 0}$ BPS
1.4 Data format: $\mathbf{8}$ bits serial, LSB first, $\mathbf{1}$ start bit, $\mathbf{1}$ stop bit, none parity.
1.5 Please wait more 30 uSEC between two bytes when send the control command.

2. Data link layer

2.1 Frame format

1st	2nd	3rd	4th	5th	6th	7th	",	Last-2	Last-1	Last
Header	ID	Length	Data0	Data1	Data2	Data3	",	Chksum_L	Chksum_H	End

1) Header

The Code consisting of one byte is for frame synchronization.
The frame header send from the master machine is termed the command header.
The command header byte is fixed as fallow.
1st: F0h (base 16)

The frame header send from the slave machine is termed the return header.
The return header byte is fixed as fallow.
1st: FCh (base 16)
2) ID number

The equipment ID number is composed of 8 bits
The ID of SE600 main board: 3Ch (base 16)
3) Length

The length is the sum of bytes from the header to the end.
It is composed of 8 bits and the length must less than $\mathbf{1 2 8}$.
Note: 06h (base 16) < Length < = 80h(base 16)
4) Data

Data block used by application layer.
Refer to Section 3 ~ .

5) Checksum

The 8 bits checksum is obtain from header to the last data, and then convert to two numeric ASCII code.

Checksum=header + ID + legth + data $0+$ data $1+\ldots+$ last_data
chksum_L=30h + (low nibble of checksum)
chksum_H=30h + (high nibble of checksum shift to right 4bits)
6) End

The end byte is fixed to $\mathbf{F F h}$ (base 16).

3. Application layer

The application layer designates the command structure and contents.

3.1 Command data format

4th	5th	6th	7th	8th	9th	10th	11th	
Command Group	Control Mode	Operated \#1	Operated \#2	Operated \#3	Operated \#4	Operated \#5	Operated \#6	\ldots

1) The command group

$\mathbf{0 5 h}=$ SE600 main board control. => The follow command is for main board.
$\mathbf{0 8 h}=$ SE600 Extention card control. \quad => The follow command is for extension card.

2) The Control Mode

(for main board group only, in the other command group please set to 01h)
$\mathbf{0 0 h}=\mathbf{A S K}$ status mode.
$\mathbf{0 1 h}=$ NORMAL key mode .
$\mathbf{0 2 h}=\mathbf{T}-\mathbf{B A R}$ mode.
3) The operated refer to the section $4 \sim$.

3.2 Return data format

4th	5th	$6^{\text {th }}$	7th	8th	9th	10th	11th	
Command Group	Control Mode	parameter \#1	parameter \#2	parameter \#3	parameter \#4	parameter \#5	parameter \#6	\ldots

1) The Command Group

$\mathbf{0 5 h}=$ SE600 main board control.
$\mathbf{0 7 h}=$ SE600 main board message. $=>$ The follow parameters are ASCII strings for controller to display.
$\mathbf{0 8 h}=$ SE600 Extention card control.
2) The Control Mode

Same as the 3.1 command data format's control mode.
3) The parameters refer to the follow description.

4. Operated

4.1 The command group $=05 \mathrm{~h}$ (SE600 Main board control)

4.1.1 The control mode $=\mathbf{0 0 h}$ (ASK status mode): Ask the SE600 main set's status.

$1^{\text {st }}$	2nd	3rd	4th	5th	6th	7th	8th
F0h	3Ch	08h	$\underline{\mathbf{0 5 h}}$	$\mathbf{0 0 \boldsymbol { h }}$	39 h	33h	FFh
Header	ID	length	group	ASK mode	cksm_L	cksm_H	end

4.1.2 The return data stream from SE600 (ASK status mode)

1 st	2nd	3rd	4 th	5th	6th	7th	8th	9th
FCh	3Ch	13 h length	$\underline{\underline{05 h}}$	$\underline{00 h}$	Parameter $\# 1$	Parameter $\# 2$	Parameter $\# 3$	Parameter $\# 4$

10th ~ 15th	16th	17th	18th	19th
Parameter $\# 5 \sim 10$	Parameter $\# 11$	cksm_L	cksm_H	FFh

4.1.2. parameter- $\mathbf{1}=$ busy flags

bit $0=$ busy in transition $=$ ' 1 '
bit1=busy in T -bar= ' 1 '
bit2=busy in effect= ' 1 '
bit3=NTSC (' 0 ') or PAL (' 1 ')
bit $4=$ main source be frozen $=$ ' 1 ',
bit5=sub source be frozen = ' 1 '
bit $6=$ fade to black function is active $=$ ' 1 ,
bit7=0
4.1.2.2 parameter-2 $=$ speed $\&$ effect level
bit0 $\sim 3=$ Speed No.
bit4~6= Effect level
bit7=0;
4.1.2.3 parameter $-3=$ current transition

Bit6 \sim bit 0	$=0=$ cut,	$1=$ fade (dissolve)
	$2=$ wipe_left_to_right,	$3=$ wipe_right_to_left,
	$4=$ wipe_bottom_to_top,	$5=$ wipe_top_to_bottom,
	$6=$ wipe_center_to_top/bottom,	$7=$ wipe_top/bottom_to_center
	$8=$ wipe_center_to_left/right,	$9=$ wipe_left/right_to_center
	$10=$ wipe_left/top_to_right/bottom,	$11=$ wipe_right/bottom_to_left_top
	$12=$ wipe_left/bottom_to_right/top,	$13=$ wipe_right/top_to_left/bottom
	$14=$ wipe_center_to_4coner,	$15=$ wipe_4corner_to_center
	bit7 $=0 ;$	

4.1.2.4 parameter-4= current effect

> bit $0 \sim 4=$ Current special effect $\quad \begin{aligned} & 0=\text { no special, } \\ & \\ & \text { bit7 } 7=0\end{aligned}$
4.1.2.5 parameter-5= current MAIN-SOURCE

1~8=> Main source=CH1~CH8
9 => Main source=background color
$10=>$ Main source =PIP
11 $=>$ Main source=Freeze
bit7=0
4.1.2.6 parameter- $\boldsymbol{6}=$ current SUB-SOURCE

$$
\begin{aligned}
1 \sim 8 & =>\text { Sub source=CH1~CH8 } \\
9 & =>\text { Sub source=background color } \\
10 & =>\text { Sub source }=\text { PIP } \\
11 & =>\text { Sub source }=\text { Freeze } \\
\text { bit } 7 & =0
\end{aligned}
$$

4.1.2.7 parameter $-7=\mathbf{P I P}$ flag
bit $0=$ PIP enable (' 1 '=enable)
bit1=PIP_1 enable (' 1 '=enable)
bit2=PIP_2 enable
bit4=Lumakey enable
bit5=Lumakey preview is acting
bit7=0
4.1.2.8 parameter $-8=$ some special effect's status
bit0 $=$ POS_CNTL on (1 ' $=\mathrm{ON}$)
bit2 $=$ LOGO_2 on
bit3 $=$ LOGO_1 on
bit4 $=$ BDR on. (border on)
bit5 $=$ GPI_IN on
bit6 = GPI_OUT on
bit7 $=0$
4.1.2.9 parameter $-9=$ BG color $\&$ GPI_OUT action status
bit0~3 =Background color
$0=$ Black, $1=$ Blue, $2=$ Red, $3=$ Magenta, $4=$ Green, $5=$ Cyan, 6=Yellow, $7=$ White, 0 Eh=Lines, 0 Fh=Color bar
bit4=GPI_OUT is acting
bit7=0
4.1.2.10 parameter-10 = border style \& border color
bit0~3=border color
$0=$ Black, $1=$ Blue, $2=$ Red, $3=$ Magenta, $4=$ Green, $5=$ Cyan, 6=Yellow, 7=White, 0Eh=Lines, 0Fh=Color bar bit4~6=border style $0=$ border off, $1=$ narrow border, $1=$ middle border, $2=$ wide border bit7=0
4.1.2.11

$$
\begin{aligned}
& \text { parameter-11 }=\text { PIP-BACKGROUND source } \\
& 0 \sim 7=>\text { PIP-BG }=\text { CH1 } \sim \text { CH } 8 \\
& 8 \Rightarrow>\text { PIP-BG }=\text { background color }
\end{aligned}
$$

4.1.2.12 parameter-12 $=\boldsymbol{A U X}$-1 source

Bit0 \sim bit $3=A U X-1$ source
$0 \sim 7=>$ AUX-1 source=$=\mathrm{CH} 1 \sim \mathrm{CH} 8$
8 => AUX-1 source=background color
$14=>$ AUX-1 source $=$ Main source
$15=>$ AUX-1 source $=$ Sub source
Bit4~bit6= PIP-1 source
0~7=> PIP-1 source=CH1~CH8
bit7=0
4.1.2.13 \quad parameter- $13=A U X-2$ source

Bit0 $\sim b i t 3=A U X-2$ source
0~7=> AUX-2 source=CH1~CH8
8 => AUX-2 source=background color
$14=>$ AUX-2 source $=$ Main source
15=> AUX-2 source =Sub source
Bit4~bit6= PIP-2 source
0~7=> PIP-2 source=CH1~CH8
bit7=0
4.1.2.14 Parameter-14 = Setting flag
bit0=setting on ($\quad 1$ ' $=\mathrm{ON}$)
bit1=PIP setting on
bit2=LOGO setting on
bit3=Lumakey setting on
bit4=FREEZE LOCK on
bit7=0

4.2 The control mode $=01 \mathrm{~h}$ (NORMAL key mode)
 Control the SE600 main board's function.

4.2.1 The control data stream

1st	2nd	3rd	4th	5th	6th	7th	8th
FOh	$\begin{array}{\|l\|l} \hline 3 \mathrm{Ch} \\ \mathrm{ID} \end{array}$	Ofh	$\begin{aligned} & \text { 05h } \\ & \text { group } \end{aligned}$	01h Normal key mode	Kev Command code	00h	00h

$9^{\text {mh }}$	10th	11th	12th	13th	14th	15 th
00 h	00 h	00 h	00 h	cksm_L	cksm_H	FFh

4.2.2 The return data stream from SE600

The SE600 return the SE600's status same as 4.1.2 normally.
(Note: key command code from 1 to 109)

4.2.3 The Key Command Code

$1(01 \mathrm{~h})=$	KEY_SUB_1,	2(02h) $=$	KEY_SUB_2
$\mathbf{3}(03 \mathrm{~h})=$	KEY_SUB_3,	$4(04 h)=$	KEY_SUB_4
$5(05 h)=$	KEY_SUB_5,	$6(06 h)=$	KEY_SUB_6
$7(07 \mathrm{~h})=$	KEY_SUB_7,	$8(08 h)=$	KEY_SUB_8
$9(09 h)=$	KEY_SUB_BK,	$10(0 \mathrm{Ah})=$	KEY_SUB_PIP
$11(0 \mathrm{Bh})=$	KEY_SUB_FZ,	$12(0 \mathrm{Ch})=$	KEY_SUB_PVW
$13(0 \mathrm{Dh})=$	KEY_MAIN_1,	14(0Eh) =	KEY_MAIN_2
$15(0 \mathrm{Fh})=$	KEY_MAIN_3,	16(10h) =	KEY_MAIN_4
17(11) $=$	KEY_MAIN_5,	18(12h) =	KEY_MAIN_6
19(13h) =	KEY_MAIN_7,	$20(14 \mathrm{~h})=$	KEY_MAIN_8
21(15h) =	KEY_MAIN_BK,	22(16h) =	KEY_MAIN_PIP
23(17h) $=$	KEY_MAIN_FZ,	24(18h) =	KEY_MAIN_FTB
31(1Fh) $=$	KEY_SPEED_1,	32(20h) =	KEY_SPEED_2
33(21h) =	KEY_SPEED_3,	34(22h) =	KEY_SPEED_4
35(23h) $=$	KEY_SPEED_5,		
37(25h) $=$	KEY_GPI_TRIGGER,	38(26h) $=$	KEY_CUT
$39(27 \mathrm{~h})=$	KEY_TAKE,		
40(28h) =	KEY_BDR,	$41(29 \mathrm{~h})=$	KEY_BDR_CO

```
42(2Ah) = KEY_BG,
44(2Ch)= KEY_B/W, 45(2Dh) = KEY_LOGO_SET
46(2Eh) = KEY_LUMAKEY_SET,
    49(31h) = KEY_PIP_SET
50(32h)= KEY_MOSAIC, 51(33h)= KEY_PAINT
54(36h) = KEY_C_TO_4CNR, 55(37h) = KEY_4CNR_TO_C (C=center, CNR=corner)
56(38h)= KEY_FADE, 57(39h)= KEY_SPD (SPD=speed)
58(3Ah) = KEY_L/T_TO_R/B, 59(3Bh) = KEY_R/B_TO_L/T (L=left, R=right, T=top,
60(3Ch) = KEY_L/B_TO_R/T, 61(3Dh) = KEY_R/T_TO_L/B
62(3Eh) = KEY_C_TO_T/B, 63(3Fh) = KEY_T/B_TO_C
64(40h) = KEY_C_TO_L/R, 65(41h) = KEY_L/R_TO_C,
66(42h) = KEY_L_TO_R, 67(43h) = KEY_R_TO_L
68(44h)= KEY_B_TO_T, 69(45h)= KEY_T_TO_B
70(46h) = KEY_LUMAKEY_PV, 71(47h) = KEY_LUMAKEY_ON
72(48h) = KEY_PIP1_EN, 73(49h)= KEY_PIP2_EN
74(4Ah) = KEY_LOGO1_EN, 75(4Bh) = KEY_LOGO2_EN
78(4Eh)= KEY_LEFT_ARROW, 79(4Fh) = KEY_RIGHT_ARROW
80(50h)= KEY_UP, 81(51h)= KEY_DOWN
82(52h) = KEY_SETTING,
    85(55h) = KEY_ENTER
90(5Ah) = KEY_AUX1_SOURCE, 91(5Bh) = KEY_AUX2_SOURCE
92(5Ch) = SET_PIP1_SOURCE, 93(5Dh) = SET_PIP2_SOURCE
94(5Eh) = SET_PIP_BG, 95(5Fh) = ASK_PIP_SOURCE
109(6Dh) = KEY_FREEZE_LOCK
```


4.2.4 Example

```
Example\#1: Switch main source to CH5
F0h,3Ch,0Fh,05h,01h,11h,00h,00h,00h,00h,00h,00h,32h,35h,FFh
                                    KEY_MAIN_5
Example\#2: Do auto take
F0h,3Ch,0Fh,05h,01h,27h,00h,00h,00h,00h,00h,00h,38h,36h,FFh
KEY_TAKE
Example\#3: Switch main source to CH1
F0h,3Ch,0Fh,05h,01h,0Dh,00h,00h,00h,00h,00h,00h,3Eh,34h,FFh
Example\#4: Switch main source to CH2
F0h,3Ch,0Fh,05h,01h,0Eh,00h,00h,00h,00h,00h,00h,3Fh,34h,FFh
Example\#5: Switch main source to CH3
F0h,3Ch,0Fh,05h,01h,0Fh,00h,00h,00h,00h,00h,00h,30h,35h,FFh
```

Example\#6: Switch main source to CH4
F0h,3Ch,0Fh,05h,01h,10h,00h,00h,00h,00h,00h,00h,31h,35h,FFh
Example\#7: Switch main source to CH5
F0h,3Ch,0Fh,05h,01h,11h,00h,00h,00h,00h,00h,00h,32h,35h,FFh
Example\#8: Switch main source to CH6
F0h,3Ch,0Fh,05h,01h,12h,00h,00h,00h,00h,00h,00h,33h,35h,FFh
Example\#9: Switch main source to CH7
F0h,3Ch,0Fh,05h,01h,13h,00h,00h,00h,00h,00h,00h,34h,35h,FFh
Example\#10: Switch main source to CH8
F0h,3Ch,0Fh,05h,01h,14h,00h,00h,00h,00h,00h,00h,35h,35h,FFh
Example\#11: Switch main source to main-PIP
F0h,3Ch,0Fh,05h,01h,16h,00h,00h,00h,00h,00h,00h,37h,35h,FFh

Example\#12: Switch sub source to CH1
F0h,3Ch,0Fh,05h,01h,01h,00h,00h,00h,00h,00h,00h,32h,34h,FFh
Example\#13: Switch sub source to CH2
F0h,3Ch,0Fh,05h,01h,02h,00h,00h,00h,00h,00h,00h,33h,34h,FFh
Example\#14: Switch sub source to CH3
F0h,3Ch,0Fh,05h,01h,03h,00h,00h,00h,00h,00h,00h,34h,34h,FFh
Example\#15: Switch sub source to CH4
F0h,3Ch,0Fh,05h,01h,04h,00h,00h,00h,00h,00h,00h,35h,34h,FFh
Example\#16: Switch sub source to CH5
F0h,3Ch,0Fh,05h,01h,05h,00h,00h,00h,00h,00h,00h,36h,34h,FFh
Example\#17: Switch sub source to CH6
F0h,3Ch,0Fh,05h,01h,06h,00h,00h,00h,00h,00h,00h,37h,34h,FFh
Example\#18: Switch sub source to CH7
F0h,3Ch,0Fh,05h,01h,07h,00h,00h,00h,00h,00h,00h,38h,34h,FFh
Example\#19: Switch sub source to CH8
F0h,3Ch,0Fh,05h,01h,08h,00h,00h,00h,00h,00h,00h,39h,34h,FFh
Example\#20: Switch sub source to sub-BK
F0h,3Ch,0Fh,05h,01h,09h,00h,00h,00h,00h,00h,00h,3ah,34h,FFh
Example\#21: Switch sub source to sub-PIP
F0h,3Ch,0Fh,05h,01h,0Ah,00h,00h,00h,00h,00h,00h,3bh,34h,FFh

4.2.5 T-bar command

1st	2nd	3rd	4th	5th	6th	7th	8th
F0h	3Ch ID	0fh	05h group	02h T-BAR mode	T-BAR enable	T-bar value- L	T-bar value- \boldsymbol{H}

$9^{\text {th }}$	10 th	11 th	12th	13th	14th	15th
00 h	00 h	00 h	00 h	cksm_L	cksm_H	FFh

T-bar value-L'b0~b4= the low 4 bits of T-bar's value
T-bar value-H'b0~b4= the high 4 bits of T-bar's value
(T-bar value => from 00h to ffh)

Example\#1: T-Bar enable and moving

F0h,3Ch,0Fh,05h,02h,01h,0Lh,0Hh,00h,00h,00h,00h,3xh,3yh,FFh

Example\#2: T-Bar disable

F0h,3Ch,0Fh,05h,02h,00h,0Lh,0Hh,00h,00h,00h,00h,3xh,3yh,FFh

4.2.6 AUX \& PIP source command

Command code $=>\mathbf{9 0}(5 A h)=$ SET AUX1 SOURCE
Parameter \#1 = > 30h~37h=CH1~CH8, 38h=BG

Command code $=>$ 91(5Bh) $=$ SET AUX2 SOURCE
Parameter \#1 = > 30h~37h=CH1~CH8, 38h=BG

Command code $=>92(5 C h)=$ SET PIP1 SOURCE
Parameter \#1 = > 30h~37h=CH1~CH8, 38h=BG
--- Answer ---
Parameter \#1 = > PIP1 source: $30 \mathrm{~h} \sim 38 \mathrm{~h}$
Parameter \#2 = > PIP2 source: 30h~38h
Parameter \#3 = > PIP_BG source: $30 \mathrm{~h} \sim 37 \mathrm{~h}$

Command code $=>$ 93(5Dh) $=$ SET PIP2 SOURCE
Parameter \#1 = > 30h~37h=CH1~CH8, 38h=BG
--- Answer ---
Parameter \#1 = > PIP1 source: $30 \mathrm{~h} \sim 38 \mathrm{~h}$
Parameter \#2 = > PIP2 source: 30h~38h
Parameter \#3 = > PIP_BG source: $30 \mathrm{~h} \sim 37 \mathrm{~h}$

Command code $=>$ 94(5Eh) $=$ SET PIP BACKGROUND SOURCE

Parameter \#1 = > 30h~37h=CH1~CH8,
--- Answer ---
Parameter \#1 = > PIP1 source: 30h~38h
Parameter \#2 = > PIP2 source: 30h~38h
Parameter \#3 = > PIP_BG source: $30 \mathrm{~h} \sim 37 \mathrm{~h}$

Example\#1: Switch PIP1 source to CH3

> F0h,3Ch,0Ah,05h,01h, $5 \mathrm{Ch}, 32 h, 3 A h, 3 C h, F F h$
> $5 \mathrm{Ch}=S E T _P I P 1 _S O U R C E$
> $32 h=C H-3$

Answer from SE600: FCh,3Ch,0Ch,05h,01h,5Fh,32h,31h,32h,3Eh,33h,FFh

Example\#2: Switch PIP1 source to CH1 : F0h,3Ch,0Ah,05h,01h,5Ch,30h,38h,3Ch,FFh
Example\#3: Switch PIP1 source to CH2 : F0h,3Ch,0Ah,05h,01h,5Ch,31h,39h,3Ch,FFh
Example\#4: Switch PIP1 source to CH3 : F0h,3Ch,0Ah,05h,01h,5Ch,32h,3Ah,3Ch,FFh
Example\#5: Switch PIP1 source to CH4 : F0h,3Ch,0Ah,05h,01h,5Ch,33h,3Bh,3Ch,FFh

Example\#6: Switch PIP1 source to CH5 : F0h,3Ch,0Ah,05h,01h,5Ch,34h,3Ch,3Ch,FFh Example\#7: Switch PIP1 source to CH6 : F0h,3Ch,0Ah,05h,01h,5Ch,35h,3Dh,3Ch,FFh Example\#8: Switch PIP1 source to CH7 : F0h,3Ch,0Ah,05h,01h,5Ch,36h,3Eh,3Ch,FFh Example\#9: Switch PIP1 source to CH8 : F0h,3Ch,0Ah,05h,01h,5Ch,37h,3Fh,3Ch,FFh

Example\#10: Switch PIP background to CH1 : F0h,3Ch,0Ah,05h,01h,5Eh,30h,3Ah,3Ch,FFh Example\#11: Switch PIP background to CH2 : F0h,3Ch,0Ah,05h,01h,5Eh,31h,3Bh,3Ch,FFh Example\#12: Switch PIP background to CH3 : F0h,3Ch,0Ah,05h,01h,5Eh,32h,3Ch,3Ch,FFh Example\#13: Switch PIP background to CH4 : F0h,3Ch,0Ah,05h,01h,5Eh,33h,3Dh,3Ch,FFh Example\#14: Switch PIP background to CH5 : F0h,3Ch,0Ah,05h,01h,5Eh,34h,3Eh,3Ch,FFh Example\#15: Switch PIP background to CH6 : F0h,3Ch,0Ah,05h,01h,5Eh,35h,3Fh,3Ch,FFh Example\#16: Switch PIP background to CH7 : F0h,3Ch,0Ah,05h,01h,5Eh,36h,30h,3Dh,FFh Example\#17: Switch PIP background to CH8 : F0h,3Ch,0Ah,05h,01h,5Eh,37h,31h,3Dh,FFh

Example\#18: Switch PIP2 source to CH1 : F0h,3Ch,0Ah,05h,01h,5Dh,30h,39h,3Ch,FFh Example\#19: Switch PIP2 source to CH2 : F0h,3Ch,0Ah,05h,01h, 5Dh,31h,3Ah,3Ch,FFh Example\#20: Switch PIP2 source to CH3 : F0h,3Ch,0Ah,05h,01h,5Dh,32h,3Bh,3Ch,FFh Example\#21: Switch PIP2 source to CH4 : F0h,3Ch,0Ah,05h,01h,5Dh,33h,3Ch,3Ch,FFh Example\#22: Switch PIP2 source to CH5 : F0h,3Ch,0Ah,05h,01h,5Dh,34h,3Dh,3Ch,FFh Example\#23: Switch PIP2 source to CH6 : F0h,3Ch,0Ah,05h,01h,5Dh,35h,3Eh,3Ch,FFh Example\#24: Switch PIP2 source to CH7 : F0h,3Ch,0Ah,05h,01h,5Dh,36h,3Fh,3Ch,FFh Example\#25: Switch PIP2 source to CH8 : F0h,3Ch,0Ah,05h,01h, 5Dh,37h,30h,3Dh,FFh

4.3 The Main Board Extension Command Code

* Control the SE600 main board's function.
* The control mode $=01 \mathrm{~h}$ (NORMAL key mode)
4.3.1 The control data stream

1 st	2nd	3rd	4th	5th	6th	7th	8th
F0h	3 Ch	xxh	05h	01h	Extension	Parameter	Parameter
	ID	length	group	Normal key	Command code	\#1	\#2

P $^{\text {mh,, }}$	Last-2	Last-1	Last
Parameter $\#, \ldots$,	cksm_L	cksm_H	FFh

4.3.2 The Main Board Extension Command Code

```
117 = EXT_ASK_MAINBLARD_VERSION_CMD
118 = EXT_GET_CURRENT_USER_CMD
119 = EXT_RECALL_USER_PARAMETER_CMD
120= EXT_STORE_USER_PARAMETER_CMD
121 = EXT_RESET_ALL_CMD
    ;;
141 = EXT_TRANSITION_SPEED_CMD,
```


4.4.1 The Extension Main Bard Command for Memory

Command code $=>\mathbf{1 1 7 (7 5 h})=$ EXT_ASK_MAINBOARD_VERSION_CMD
Parameter \#1 = > NC
--- Answer ---
Parameter \#1~5 => C1 version ASCII code
Parameter \#6~10 => F1 version ASCII code
Parameter \#11~15 = > F2 version ASCII code

Command code $=>$ 118(76h) $=$ EXT_GET_CURRENT_USER_CMD
Parameter \#1 = > NC
--- Answer ---
Parameter \#l = > Current User No.: 31h~33h (3 users)

Command code $=>\mathbf{1 1 9}(\mathbf{7 7 h})=$ EXT_RECALL_USER_PARAMETER_CMD
Parameter \#1 = > User No.: 31h~33h (3 users),
--- Answer ---
Parameter \#1 = > User No.: 31h~33h (3 users)
$\underline{* ~}$
Command code $=>\mathbf{1 2 0}(\mathbf{7 8 h})=$ EXT_STORE_USER_PARAMETER_CMD
Parameter \#1 = > User No.: 31h~33h (3 users)
--- Answer ---
Parameter \#1 = > User No.: 31h~33h (3 users)

Command code $=>121(79 \mathrm{~h})=$ EXT_RESET_ALL_CMD
Parameter \#1 = > NC
--- Answer ---
Parameter \#1 = > Current User No.: 31h~33h

4.4.2 The Extension Main Bard Command For Speed key Setting

Command code $\boldsymbol{= >} \mathbf{1 4 1}(\mathbf{8 D h})=$ EXT_TRANSITION_SPEED_CMD
Parameter \#1 = > Get/Set: $30 \mathrm{~h}=$ get, $31 \mathrm{~h}=$ set \quad (or 00h=get/01h=set)
Parameter $\# 2=>30 \mathrm{~h}=$ reset to default, $31 \mathrm{~h}=+1$ frame, $32 \mathrm{~h}=-1$ frame, $33 \mathrm{~h}=$ set by parameter\#4 (or 00h,01h,02h,03h)

Parameter \#3 = > Speed key No.: 31h~35h(or 01h~05h): Speed\#1~Speed\#5
When (para\#1=31h and papa\#2=33h)
Parameter \#4 = > Transition duration: 1~90(5Ah) frames
--- Answer ---
Parameter \#1 = > Get/Set: 30h=get, 31h=set (or 00h=get/01h=set)
Parameter $\# 2=>30 \mathrm{~h}=$ reset to default, $31 \mathrm{~h}=+1$ frame, $32 \mathrm{~h}=-1$ frame, $33 \mathrm{~h}=$ set by parameter $\# 4$ (or 00h,01h,02h,03h)
Parameter \#3 = > Speed key No.: 31h~35h(or 01h~05h): Speed\#1~Speed\#5
Parameter \#4 = > Transition duration: 1~90(5Ah) frames

Example: Set the speed\#2 to 10 frames.
The control data stream: F0h,3Ch,0Dh,05h,01h,8Dh,01h,03h,02h,0Ah,3ch,3dh,FFh
F0h, ID(3Ch) , Length(0Dh), 05h, 01h, Command code(8Dh), para\#1(01h), para\#2(03h), para\#3(02h) , para\#4(0Ah), checksum_L(3ch), checksum_M(3dh), FFh Checksum $=\mathrm{F} 0 \mathrm{~h}+3 \mathrm{Ch}+0 \mathrm{Dh}+05 \mathrm{~h}+01 \mathrm{~h}+8 \mathrm{Dh}+01 \mathrm{~h}+03 \mathrm{~h}+02 \mathrm{~h}+0 \mathrm{Ah}=\mathrm{dch}$
The Answer from SE600 = FCh,3Ch,0Dh,05h,01h,8Dh,01h,03h,02h,0Ah,38h,3Eh,FFh
---- Or
The control data stream: F0h,3Ch,0Dh,05h,01h,8Dh,31h,33h,32h,0Ah,3ch,36h,FFh F0h, ID(3Ch) , Length(0Dh), 05h, 01h, Command code(8Dh), para\#1(31h), para\#2(33h), para\#3(32h) , para\#4(0Ah),checksum_L(3ch), checksum_M(36h), FFh Checksum $=F 0 h+3 C h+0 D h+05 h+01 h+8 D h+31 h+33 h+32 h+0 A h=6 c h$

The Answer from SE600 = FCh,3Ch,0Dh,05h,01h,8Dh,31h,33h,32h,0Ah,38h,37h,FFh

